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Abstract:  

Pre-eclampsia (PE) is a common and serious hypertensive disorder of pregnancy that occurs in 

approximately 3-5% of first-time pregnancies and is a well-known leading cause of maternal 

and neonatal mortality and morbidity. In recent years, there has been accumulating evidence 

that in utero exposure to PE acts as an environmental risk factor for various 

neurodevelopmental disorders, particularly autism spectrum disorder and ADHD. At present, 

the mechanism(s) mediating this relationship are uncertain. In this review, we outline the most 

recent evidence implicating a causal role for PE exposure in the aetiology of various 

neurodevelopmental disorders and provide a novel interpretation of neuroanatomical 

alterations in PE-exposed offspring and how these relate to their sub-optimal 

neurodevelopmental trajectory. We then postulate that inflammation and oxidative stress, two 

prominent features of the pathophysiology of PE, are likely to play a major role in mediating 

this association. The increased inflammation in the maternal circulation, placenta and fetal 

circulation in PE expose the offspring to both prenatal maternal immune activation – a risk 

factor for neurodevelopmental disorders, which has been well-characterised in animal models 

– and directly higher concentrations of pro-inflammatory cytokines, which adversely affect 

neuronal development. Similarly, the exaggerated oxidative stress in the mother, placenta and 

fetus induces the placenta to secrete factors deleterious to neurons, and exposes the fetal brain 

to directly elevated oxidative stress and thus adversely affects neurodevelopmental processes. 

Finally, we describe the interplay between inflammation and oxidative stress in PE, and how 

both systems interact to potentially alter neurodevelopmental trajectory in exposed offspring. 
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1.0 Introduction 

Pre-eclampsia (PE) is a common hypertensive disorder of pregnancy (HDP), characterised by 

new-onset hypertension on or after 20 weeks’ gestation as well as any one of proteinuria, organ 

dysfunction or uteroplacental dysfunction [1]. PE affects approximately 3-5% of primiparous 

women worldwide [2–4] and is a leading cause of maternal mortality [5, 6]. Women who have 

had a pregnancy complicated by PE are also at an increased risk of long-term cardiovascular, 

renal and metabolic morbidity and mortality [7–10]. 

Crucially, PE exposure is also a leading cause of perinatal mortality and morbidity. Infants 

exposed to PE (PE-F1) have an increased risk of neonatal death, neonatal thrombocytopenia, 

neutropenia, bronchopulmonary dysplasia [11] and hypotension [12], and PE may account for 

between 1 in 10 and 1 in 4 perinatal deaths [13]. Two meta-analyses reported that children and 

adolescents exposed to PE in utero have higher systolic and diastolic blood pressure and BMI 

than controls, without major differences in blood glucose or lipid profiles [14, 15]. A study 

from the Helsinki Birth Cohort Study of children born in Helsinki between 1934 and 1944 

followed the offspring for 60 – 70 years after birth and reported that adults who had been 

exposed to PE in utero had a two-fold increased risk of stroke [16]. 

The largest study concerning long-term morbidity in PE-F1s was conducted by Wu et al., in 

which the authors used birth records for all singleton live births in Denmark 1978-2004 

(N=1,545,443) and matched these with hospitalization records for several diseases until the 

end of 2004 (0 – 27 years follow-up) [17]. In this study, PE-F1s in every age group had a higher 

risk of hospitalization, with incidence risk ratios ranging from 1.13 to 1.26. PE-F1s born at 

term were at increased risk of hospitalization for digestive system diseases, asthma, pneumonia, 

infectious and parasitic diseases and epilepsy than term controls, while PE-F1s born pre-term 

(< 37 weeks) had a higher risk of hospitalization for digestive system diseases, skin diseases 

and genital malformations than term controls.  

So, while the effects of PE on the mother are well established, more recently there has been 

considerable accumulating research characterising the effects of PE exposure on a range of 

outcomes in the child. Additionally, there has been recent interest in elucidating the 

mechanisms of this association, particularly using preclinical models of PE [18]. In the 

following section we review the growing evidence that fetal exposure to PE increases the risk 

of a range of adverse neurodevelopmental outcomes in the offspring. 

 

2.0 Evidence of an Association between PE exposure and Neurodevelopmental Outcome. 

Here we review the evidence for an association between fetal exposure to PE and risk for autism 

spectrum disorder, attention-deficit/hyperactivity disorder, cerebral palsy, schizophrenia and 

epilepsy, and alterations in cognitive function in the offspring. We also discuss current 

limitations and knowledge gaps to understanding these associations. Although PE may also 

confer an increased risk on exposed offspring for various other brain disorders and deficits 

throughout the lifespan, the current review will focus on neurodevelopmental disorders. 

2.1 Autism Spectrum and Attention Deficit/ Hyperactivity Disorders 

Autism spectrum disorder (ASD) is a group of related neurodevelopmental disorders characterised by 

social communication deficits and stereotypic behaviours, which affects an estimated 1 – 1.5% of 



children [19, 20]; while attention-deficit/hyperactivity disorder (ADHD) is characterised by inattention, 

hyperactivity and impulsivity, with an estimated prevalence of 1.4 -3% [21]. The role of pre- and 

perinatal risk factors in the aetiology of these two highly prevalent neurodevelopmental disorders is 

increasingly well-recognised, and the evidence for an association between PE and offspring 

neurodevelopmental trajectory is strongest for ASD and ADHD. 

Several cohort studies, most commonly retrospective population-based studies, have identified PE 

exposure as an independent risk factor for ASD [22–26] and ADHD [26–29]. The evidence from case-

control studies, however, is less conclusive. While many have reported a positive association between 

PE exposure and ASD [30–32] or ADHD [33–35], others reported no such association [36–43], while 

another reported a borderline-significant association with ADHD [44]. This discrepancy may be due to 

the fact that case-control studies have less control than cohort studies over confounding variables (see 

section 2.5); their larger proclivity for bias; or smaller sample sizes, as PE incidence was too low in 

some studies to see an effect – the case-control studies above which reported positive findings typically 

had much larger samples than those that did not. Other studies which did not specify the type of HDP 

that offspring were exposed to also noted a similar positive association with ASD [45–48] and ADHD 

[49, 50]. 

Recent meta-analyses provide the most convincing evidence that there is a strong association between 

PE exposure and ASD or ADHD. Four meta-analyses published between 2017 – 2018 all concluded 

that PE-F1s have a significantly increased relative risk or odds ratio for ASD, ranging from 1.32 to 1.50 

[51–54], while one of these [52] reported an odds ratio of 1.28 for ADHD. Interestingly, a recent 

population-based retrospective cohort study found that offspring exposed to PE both via their mother 

and intergenerationally via their maternal grandmother  are more likely again to be diagnosed with ASD 

or ADHD than those exposed via only their mother, suggesting an intergenerational association between 

PE exposure and these disorders [55]. Overall, the emerging literature suggests that PE exposure 

increases offspring risk of ASD and ADHD. 

2.2 Other Common Neurodevelopmental Disorders: Cerebral Palsy, Schizophrenia and 

Epilepsy 

The term cerebral palsy (CP) is used to describe motor disabilities with cerebral origin that are 

acquired in prenatal or early postnatal life, with a wide range of aetiology and symptomology 

[56]. Among studies that do not dichotomize the sample into pre-term- and full-term-born 

infants, there is no clear relationship between PE exposure and risk for CP: while many studies 

report a higher risk of CP among PE-F1s [57–61], others report do not [62–64]. Failing to make 

this distinction may be problematic because pre-term birth is itself a well-recognised risk factor 

for CP [60, 65]. However, among children born at or after 37 weeks’ gestation, there is evidence 

of a positive association between PE exposure and CP [66–69]. Intriguingly, the opposite is 

commonly seen among PE-F1s born pre-term, in that PE exposure appears to have a protective 

effect against CP [17, 70–72]. Illustrating this elusive relationship, one large retrospective 

population-based cohort study (N = 1,764,509) reported a negative association between PE 

exposure and CP risk for infants born at 23 – 31 weeks’ gestation, no association when born at 

32 – 36 weeks, and a positive association when born on or after 37 weeks [69].  

Schizophrenia is a complex neurodevelopmental disorder, which comprises psychosis, apathy, 

social withdrawal and cognitive impairment and has an equally complex aetiology associated 

with various genetic and environmental risk factors [73]. Interestingly, placentae from 

pregnancies complicated by PE express higher levels of genes associated with the genomic risk 

of schizophrenia [74]. PE exposure, however, has long been controversial as a risk factor for 

schizophrenia and the evidence is mixed. Two large retrospective cohort studies observed a 



positive association between PE exposure and schizophrenia [75, 76], while a third reported no 

increased risk [77], although outcome measures in the latter study included non-schizophrenia 

psychotic disorders. The evidence is mixed from case-control studies: although some report an 

increased schizophrenia risk among PE-F1s [78, 79], most do not [80–84]. Meta-analyses from 

2002 and 2018 reported significant odds ratios of 1.36 and 1.37, respectively, among PE-F1s 

for schizophrenia [85, 86], while a more recent and conclusive meta-analysis reported an odds 

ratio of 1.32, although this did not reach statistical significance (p = 0.059) [87]. Overall, the 

data suggest that PE exposure may be linked to offspring schizophrenia risk, although this is 

still uncertain. 

Epilepsy is a neurological disease characterised by a propensity or predisposition for generating 

epileptic seizures [88]. Obstetric and perinatal complications, including eclampsia, have been 

implicated as risk factors for idiopathic childhood epilepsy [89], yet surprisingly few studies 

have investigated pre-eclampsia as a perinatal risk factor for the disease. Those that have, 

however, generally report an increased risk of epilepsy among PE-F1s  [26, 58, 90]. If the 

sample is divided into term- and preterm-born offspring, the association is seen specifically for 

those born at term [27, 91], which suggests that, like CP, the effects of PE on epilepsy in the 

offspring may be gestational age-dependent. 

In summary, the role of PE exposure in the aetiology of other common neurodevelopmental 

disorders is less certain than it is for ASD and ADHD. It appears, however, to have a gestational 

age-dependent effect on CP risk; its effect on schizophrenia risk is contentious; and despite the 

paucity of literature, appears to be positively associated with epilepsy. 

2.3 Cognitive Function 

Cognitive function is an individual’s capacity to adequately think , learn and remember and is 

typically measured by one’s performance across the domains of perception, reasoning, intuition 

and creativity [92]. A number of studies have reported poorer cognitive function among PE-

F1s compared to controls (for systematic review, see Tuovinen et al., 2014 [93]). In infancy, 

the Bayley scales is commonly used to determine mental developmental index (MDI), 

encompassing the infant’s current level of cognitive, language, social and personal skill 

development. Three studies have reported lower MDI scores among exposed offspring [94–

96], while one study reported higher scores [97]. However, this latter study measured all 

pregnancy-induced hypertension, and not PE specifically, as its exposure; additionally, 

whereas the first three studies measured MDI at 24 months, this study was conducted at 18 

months. 

Lower IQ has been noted among PE-F1s from 3 to 18 years old [98–101], although one large 

study observed no association [102]; however, IQ is a very narrow measure of intelligence and 

all of these studies used different tests to measure offspring IQ. The first study to investigate 

academic performance among PE-F1s reported poorer verbal reasoning only when compared 

to unexposed siblings [103], although this reduced the ability to control for confounding 

variables, such as gestational age, and reduced the sample to PE-F1s with siblings who could 

be compared to. A more recent cohort study from Iceland found that after controlling for 

covariates, PE-F1s perform worse than their unexposed peers at 9, 12 and 15 years old on 

mathematics but not language arts [104].Two older studies found that PE exposure is a risk 

factor for intellectual disability in childhood [105, 106]. This has been confirmed by a more 



recent population-based cohort study [26] and is in line with reports that children exposed to 

PE are more likely to avail of special needs services and special education classes than their 

unexposed peers [101, 107]. 

The Helsinki Birth Cohort Study has reported that PE-F1s have poorer verbal reasoning skills 

and total intellectual ability at 20 years old [108]. Interestingly, when subjects were followed 

up at a mean of age of 69, they exhibited an increased rate of cognitive decline and higher rates 

of self-reported cognitive dysfunction, suggesting the deleterious effects of PE exposure persist 

into old age [109–111]. However, to the best of the authors’ knowledge, no study so far has 

implicated prenatal PE exposure as a risk factor for any form of dementia. Taken together, 

these data suggest that PE may also be associated with impaired cognitive function in exposed 

offspring. 

2.4 Validity and Types of PE Exposure  

Detailed medical birth registries are kept by Denmark, Iceland, Finland, Norway and Sweden 

and the manner in which these registries are kept is remarkably similar, to the point that their 

data can even be combined to generate larger cohorts [112]. Many of the studies presented in 

sections 2.1 – 2.3 which provide some of the most convincing evidence for a causal role of PE 

in the aetiology of neurodevelopmental disorders, are population-based studies using these 

Nordic registries [17, 24, 60, 69, 75, 76, 78, 91, 98, 104, 26, 29, 31, 39, 41, 44, 46, 55], so the 

validity of these registries is an important factor for determining the true relationship between 

PE and offspring neurodevelopmental disorders. The specificity and positive predictive value 

(PPV) for Nordic registries varies depending on diagnosis, but is generally very high, although 

sensitivity can be quite low [113–115]. The PPV for PE in these registries is very high, ranging 

from 74 – 93%, while specificity is typically  ̴ 99% [116–120]; sensitivity of PE diagnosis, 

however, is only 43 – 69% [117–119], which means that the registries may be missing as many 

as half of the true PE cases. Increasing the sensitivity of the Nordic registries would mean that 

a higher proportion of true PE cases are reported in the PE groups, but how this would affect 

the results from the above-mentioned studies is uncertain. Other cohort studies, such as the 

Helsinki Birth Cohort Study [77, 108–111] and the Avon Longitudinal Study of Parents and 

Children [28, 81], as well as many smaller studies set in regional hospitals or clinics, defined 

PE according to gestational blood pressure and protein urine measurements, or a diagnosis 

made by a qualified clinician. 

Although the International Society for the Study of Hypertension in Pregnancy (ISSHP) does 

not recommend classifying PE as ‘mild’ or ‘severe’ for clinical purposes, the distinction may 

be useful for research purposes [1, 121]. Surprisingly few studies compare the effects of mild 

vs. severe PE in their final analysis. Apart from one study measuring IQ [98], all of these studies 

reported a stronger effect on the offspring’s risk of ASD, CP and epilepsy if PE was severe [17, 

27, 32, 58]. Wu et al. found that the increased risk for epilepsy among PE-exposed term-born 

infants was greater when exposed to severe PE; while the protective effect of PE against CP in 

preterm-born offspring was seen only for severe PE [17]. It is therefore possible that there is a 

dose-response effect regarding fetal exposure to PE. However, as severe PE is much less 

common than mild PE, one limitation of making this distinction is to drastically reduce the 

sample size for the severe PE group, potentially affecting statistical power. Additionally, a few 

studies grouped eclampsia into the exposure group [25, 104] which is likely to confound the 

results, as eclamptic seizures are essentially a separate disease exposure for the fetus.  



Another distinction that can be made is whether PE is early- (typically <34 weeks’ gestation) 

or late-onset [121]. As with PE severity, however, very few studies subdivide the PE exposure 

group in this way. The few studies which do this report an increased risk for CP if exposed to 

early-, but not late-onset PE, and a greater increased risk for epilepsy if exposed to late- rather 

than early-onset PE [27, 57, 67]. In early-onset PE, there is a greater risk for intra-uterine 

growth restriction (IUGR) and preterm birth, and a higher involvement of placental pathology 

[122]. Additionally, in early-onset PE, the fetus is exposed to PE pathophysiology for a longer 

duration, and during a period in which neurodevelopmental processes are at an earlier and 

potentially more sensitive stage. Therefore, it would be a valuable contribution to our 

understanding of the relationship between PE and fetal neurodevelopment if more future 

studies dichotomize the PE exposure as early- or late-onset. 

2.5 Confounding by Parity and Comorbid Obstetric Complications  

Women who suffer from PE in their first pregnancy are less likely to have additional 

pregnancies, so PE incidence is correspondingly lower in the multiparous population [4, 123]. 

Importantly, high parity is itself a risk factor for neurodevelopmental disorders [36, 53, 78]. 

This means it is possible that the effect of PE on offspring neurodevelopment may be smaller 

than it would otherwise be if pre-eclamptic women progressed to multiparity at the same rate 

as normotensive women. However, most of the studies in this review control for parity as a 

potentially confounding variable in their multivariate analysis, while one study [62] restricted 

their sample to primiparous women only.  

PE is also a leading cause of other obstetric complications, most notably pre-term birth, small 

for gestational age (SGA) birthweight and IUGR, and, importantly, these conditions are 

recognized as perinatal risk factors for neurodevelopmental disorders [22, 25, 44, 46, 53, 60, 

75, 124, 125]. The studies described here generally control well for these and other factors as 

potentially confounding variables in their analyses, and the associations reported in this review, 

where possible, are based on adjusted risk figures from multivariate analysis models reported 

in these studies. PE is particularly associated with preterm births, so a few studies have 

stratified their sample by gestational age. This has revealed, for example, that PE reduces risk 

for CP in preterm-born infants compared to unexposed preterm controls, but increases the risk 

in term infants [68, 69] and that PE may only increase epilepsy risk in children born at term 

[17]. Similarly, PE may only increase risk for CP among term infants if they are SGA [126]. 

Although most cohort studies compare the PE group to an unexposed population and then 

control for confounding variables, some instead compare to unexposed siblings [29, 55, 103]. 

While this approach has the advantage of controlling for several maternal, paternal, genetic and 

sociodemographic factors, it can be difficult to control for the lower incidence of preterm birth, 

SGA and IUGR in unexposed siblings. 

Exactly how much of the relationship between PE and offspring neurodevelopmental disorders 

is attributable to these factors can be difficult to determine. A number of studies restricted their 

analysis to preterm, SGA or IUGR-exposed populations [71, 72, 100, 127, 128] and in many 

cases still report an effect of PE on offspring neurodevelopment. One study reported that 50% 

of the relationship between PE and intellectual disability in the offspring was mediated by 

SGA; similarly, a recent study used Sobel testing to determine how much of the relationship 

between PE and cumulative mental disorders in the offspring is mediated by preterm birth or 

SGA, and in both cases found that the mediation effect was a similar size to the direct effect of 



PE [129]. Thus it appears that these comorbid obstetric complications account for some, but 

not all, of the association between PE and offspring neurodevelopmental trajectory, and that 

the remaining effect may be attributable to some feature(s) intrinsic to the pathophysiology of 

PE. 

In summary, PE is associated with sub-optimal neurodevelopmental outcome in exposed 

offspring, but some questions about this relationship remain unanswered – these are, primarily: 

how strong is the relationship between PE and disorders others than ASD and ADHD in 

exposed offspring; what proportion of PE is missed by Nordic registries and how may this 

affect the results from studies using these registries; does the effect of PE on fetal 

neurodevelopment become more drastic with  an increase in PE severity; do early- and late-

onset PE affect fetal neurodevelopment differently; and to what extent is the relationship 

mediated by confounding variables such as comorbid birth complications? Before discussing 

potential pathogenic mechanisms, we will next describe neuroimaging studies in PE-F1s and 

relate their results to the evidence provided above in section 2. 

 

3.0 Evidence for neuroanatomical alterations in the brains of offspring exposed to Pre-

eclampsia 

Few neuroimaging studies have been carried out on PE-F1s, although one group has recently 

reported neuroanatomical alterations which are congruent with the studies described above 

[130]. The authors selected 10 children aged 7 – 10 years old who had been exposed to PE, and 

10 age-matched controls, using three types of magnetic resonance imaging (MRI) paradigms 

to investigate regional grey matter volumes, white matter structural connectivity and functional 

connectivity differences between the groups. 

3.1 Regional Grey Matter Volume 

Although the authors reported no difference in total brain volume, PE-F1s exhibited larger 

regional corrected volumes of the amygdala, temporal lobe, brainstem and cerebellum. There 

was, however, a significant difference in birth weight between the groups, which may have 

confounded the results [130]. Enlarged amygdalae are seen in children with ASD [131, 132] 

and some cases of temporal lobe epilepsy [133] . Similarly, increased temporal lobe [134] and 

brainstem [135] volumes have been reported in children with ASD. Unlike the above finding 

of increased cerebellar volume, however, a smaller cerebellum is seen in patients with ASD 

[136], ADHD  [137, 138] and schizophrenia [139]. 

3.2 Structural Connectivity 

Diffusion tensor imaging (DTI) characterizes the diffusion of water molecules in tissues and 

can be used to map white matter tracts in the brain [140]. This is achieved by measuring 

fractional anisotropy (FA) as a proxy for white matter microstructural integrity, and axial and 

radial diffusion to determine the directionality of axons in the white matter tract. Using DTI, 

the authors reported that PE-F1s have increased white matter volume and fractional anisotropy 

in the caudate nucleus, increased white matter volume of the superior longitudinal fasciculus 

(SLF) and increased axial diffusion of the cingulate gyrus [141].  

The caudate nucleus is part of the striatum and is involved in learning and memory, motor 

output and goal-directed behaviour [142]. Autistic children exhibit hyperconnectivity of the 



striatum [143] and accelerated growth of caudate grey matter, which correlates with severity 

of restricted-repetitive behaviours [144]. They also display abnormal processing of social and 

non-social rewards associated with striatal activity, which may partially underlie their restricted 

interests [145]. Higher inflow/outflow and structural connectivity of the caudate nucleus have 

also been reported in Tourette’s syndrome and frontal lobe epilepsy [146, 147]. 

The SLF is a frontoparietal white matter tract with a crucial role in language processing [148]. 

Language deficits are a prominent feature of ASD [149–151]. However, the literature on 

connectivity of the SLF in ASD is inconclusive – whereas one study reported increased FA in 

part of the SLF [152], others found decreased FA  [153] or no FA change at all [154]. Similarly, 

language problems are common in schizophrenia [155], and schizophrenics display reduced 

FA of the SLF [156], particularly those with auditory hallucinations [157]. 

The cingulum bundle is a large white matter tract which forms a core part of the limbic system 

and its roles include episodic memory, pain and emotional processing [158]. In ASD there is 

increased mean diffusivity of the cingulum [159] and hypoactivity of the associated cingulate 

gyrus, which correlates with the severity of autistic symptoms [160]. ADHD and schizophrenia 

are characterised by dysfunctional emotional processing [161, 162] and, importantly, both 

disorders are associated with reduced FA of the cingulum [163–166]. 

3.3 Functional Connectivity 

Resting-state functional MRI (rs-fMRI) can be used to measure the degree of functional 

connectivity (FC) between two brain regions based on the temporal synchronization of their 

activity [167]. Using rs-fMRI, the authors observed higher connectivity in PE-F1s between the 

left amygdala and bilateral frontal pole, the right amygdala and left frontal pole and the medial 

prefrontal cortex (mPFC) and precuneus; and decreased connectivity between the mPFC and 

the left occipital fusiform gyrus [168].  

The amygdala is a deep-brain nucleus involved in emotional learning and memory and fear 

processing [169], and the frontal pole is the most anterior part of the prefrontal cortex, 

concerned with goal-engineering processes [170]. In the neurotypical brain, rsFC between the 

amygdala and frontal pole increases after acute psychosocial stress [171]. Interestingly, 

increased amygdala-frontal pole rsFC positively correlates with symptom severity in 

adolescents with generalized anxiety disorder [172] and emotional liability in children with 

ADHD [173].  

The mPFC and precuneus are part of the default mode network (DMN), a group of functionally 

related brain structures that are highly active at rest and suppressed during most tasks [174]. 

Increased rsFC between these regions is unusual considering DMN hypoconnectivity is seen 

at rest in schizophrenia [175], ADHD [176] and ASD with low verbal and cognitive 

performance [177], wherein the latter study DMN dysconnectivity was negatively correlated 

with IQ. However, it would be interesting to study DMN FC in PE-F1s during cognitive tasks, 

as task-related de-activation of the DMN is reduced in ASD and schizophrenia, and this 

reduction is associated with poorer task performance [178–180]. 

The fusiform gyrus, continuous between the temporal and occipital lobes, is important for face 

perception and object recognition [181]. Facial recognition deficits are present in both ASD 

[182] and schizophrenia [183]. Correspondingly, the fusiform gyrus is smaller in schizophrenia 

[184] and hypoactive during face recognition tasks in ASD [185, 186]. 



The main brain regions affected in this study were part of the “social brain”, concerned with 

empathy, social cognition and social interaction [187]. Social cognition is impaired in both 

ASD and schizophrenia [188]. For example, children with ASD have reduced activity of social 

brain areas in response to emotional facial expressions [189]. In fact, the aberrant empathy and 

overall social brain deficits in schizophrenia have led to the “social brain hypothesis” of 

schizophrenia which postulates that the disease primarily manifests from social brain 

dysfunction [190]. 

Thus the regional volumetric brain changes, white matter structural connectivity and rsFC 

results from these three studies are congruous with the anatomical and functional brain changes 

seen in neurodevelopmental disorders. Although these results come from only one small pilot 

cohort, they suggest that PE-F1s have brain structural and functional alterations which may 

underlie their increased risk of neurodevelopmental disorders. 

 

4.0 Potential Pathogenic Mediators of Pre-eclampsia that May Alter Fetal 

Neurodevelopmental Outcomes. 

4.1 Inflammation 

Although maternal inflammation is a physiological component of pregnancy [191, 192], PE is 

characterised by an exaggerated maternal inflammatory response, which can have a deleterious 

effects on fetal neurodevelopmental trajectories (Figure 1). 

4.1.1 Increased inflammatory response in Pre-eclampsia 

Dysregulated immune activation is a well-recognized feature of PE (reviewed by [193]). 

Women with PE have higher circulating concentrations of the pro-inflammatory cytokines 

TNFα, IL-6, IL-8 and IL-16 and C-reactive protein (CRP) [192, 194–198]. They may also have 

lower levels of anti-inflammatory cytokines, TGFβ and IL-10, although this is less well 

characterized [197, 199]. Correspondingly, there is an imbalance of circulating immune cell 

populations. Pre-eclamptic women have greater numbers of neutrophils, increased neutrophil 

activation [200] and increased leukocytes [192]  compared to normotensive pregnant women. 

There is also a reduction in regulatory T (Treg) cell number [201], and immune cell populations 

are shifted towards an increased relative abundance of pro-inflammatory T-cells (Th1 > Th2 

cells and Th17 > Treg cells) [202]. Interestingly, monocytes from women with PE produce 

higher levels of TNFα, which inhibits proliferation of human trophoblasts [203].  

Animal models of PE have elucidated a central role for inflammation in the pathophysiology 

of the disease. In the reduced uterine perfusion pressure (RUPP) pre-clinical model of pre-

eclampsia, RUPP rats have increased levels of circulating TNFα and IL-6 [204, 205]; similarly, 

IL-6 infusion or transfer of Th-17 cells from RUPP rats to normal pregnant rats induces 

increased mean arterial pressure (MAP) and other features of PE [205, 206]. Conversely, the 

raised MAP and additional features of PE  in RUPP rats can be ameliorated by injection of 

exogenous anti-inflammatory IL-4, IL-10 or Treg cells, or by stimulating the proliferation of 

endogenous Treg cells [207–210]. Additionally, injection of the bacterial endotoxin 

lipopolysaccharide (LPS) stimulates an immune response in rodents [211, 212], this pro-

inflammatory state results in raised MAP and cardiovascular and renal deficits and is often 

used as a preclinical model of PE [213–215]. 



 

Figure 1:  Overview of markers of inflammation and oxidative stress in PE. Various biomarkers of 

inflammation and oxidative stress have been reported in the maternal circulation, placenta and fetal circulation in 

pregnancies complicated by PE. 

Pertinent to fetal development, pre-eclamptic placentae express or secrete significantly 

increased levels of pro-inflammatory cytokines TNFα, IL-1β, IL-6 and IL-16 [196, 216, 217] 

and lower levels of anti-inflammatory cytokines IL-4 and IL-10; it is also populated by fewer 

Treg cells when compared with placentae from uncomplicated pregnancies [218–220]. 

Hypoxia/reoxygenation of human placental explants cultured ex vivo induces secretion of 

TNFα and IL-1β [221, 222]. There is also evidence that these inflammatory mediators reach 

the developing foetus. In placental vascular disease, which, like PE, is characterised by 

placental insufficiency, placentae express more IL-6 and IL-8 specifically on the fetal side 

[223]. Importantly, IL-6 has been shown to cross the placenta and reach the fetal circulation 

both in vivo and ex vivo [224, 225]. Umbilical cord blood of PE-F1s have higher concentrations 

of TNFα, IL-6 and IL-8 [226, 227] and while no human studies have investigated cytokine 

levels in the PE-F1 brain, IL-1β, IL-6 and IL-18 are found in high concentrations in the brain 

tissue of pups prenatally exposed to RUPP [228]. These latter findings demonstrate that PE-



F1s are not only prenatally exposed to maternal immune activation (MIA), but also directly to 

elevated concentrations of pro-inflammatory cytokines. 

4.1.2 Implications of prenatal exposure to inflammation for fetal neurodevelopmental 

outcome 

Maternal infection during pregnancy and the consequential induction of inflammation is a 

major environmental risk factor for ASD and schizophrenia [229, 230] and elevated maternal 

CRP during pregnancy is associated with a significantly  increased risk of ASD [231]. At 7 

years of age, children exposed to elevated TNFα during pregnancy have poorer performance 

on cognitive tests, although, interestingly, exposure to elevated levels of IL-8 improved 

performance, suggesting divergent roles of different pro-inflammatory cytokines [232]. 

Similarly, prenatal exposure to MIA can cause alterations in structural and functional brain 

connectivity. Elevated maternal IL-6 concentrations are associated with reduced neonatal FA 

in the central portion of the uncinate fasciculus, a frontolimbic tract implicated in 

neurodevelopmental disorders [233]; while elevated maternal IL-6 and CRP concentrations in 

the third trimester are associated with altered functional connectivity in the DMN, salience 

network and frontoparietal networks in exposed offspring [234]. 

Animal models of MIA provide mechanistic insights into this association. Mice prenatally 

exposed to the influenza virus develop schizophrenia-like behavioural deficits [235], caused 

not by the virus itself, but by the MIA it induces, since viral particles are not detected in the 

foetus, and the same behavioural deficits can be elicited by the viral mimetic compound 

poly(I:C) [236]. Prenatal poly(I:C)-induced behavioural deficits have been replicated in rats 

and can be attenuated by treatment with anti-psychotic drugs [237, 238]. Prenatal poly(I:C) 

exposure in mice also leads to dopamine and serotonin imbalances, mimicking the 

neurochemical alterations seen in schizophrenia [239, 240]. Prenatal exposure to LPS can have 

different effects on offspring depending on the timing of exposure: early exposure (GD12)  in 

rats alters reward-seeking behaviour, whereas late exposure (GD16) causes motor deficits, 

without affecting the number of midbrain dopaminergic neurons postnatally [241]. 

One potential mechanism for this association is the influence of MIA on offspring microglia. 

Mouse offspring exposed to MIA have behavioural deficits accompanied by increased 

activation of microglia, reduced microglial expression of BDNF and an altered microglial 

methylome and transcriptome [242–244]. Interestingly, the areas of increased methylation are 

associated with inflammatory pathways, such as IL-4, IL-6, and IL-8 signalling [243]. This is 

particularly pertinent to neurodevelopment, considering the central role microglia play in 

regulating cortical neurogenesis and early postnatal synaptic pruning [245, 246]. As such, 

microglial alterations have been implicated in the pathogenesis of neurodevelopmental 

disorders such as ASD [247].   

Neurodevelopmental alterations may also result from high concentrations of cytokines in the 

fetal brain.  Rats exposed to LPS have higher levels of IL-1β in the placenta and TNFα, IL-1β 

and IL-6 in the amniotic fluid [248, 249]. Cytokines are known to cross the blood-brain barrier 

(BBB) [250], and, consequently, elevated concentrations of TNFα, IL-1β and IL-6 are found 

in the brains of MIA-exposed rats and mice [251, 252]. This aligns with observations of 

neuroinflammation in individuals with ASD and schizophrenia [253, 254]. One example of a 

pro-inflammatory cytokine with deleterious effects on neurodevelopment is IL-1β, which 

inhibits proliferation of neural progenitor cells and neurite growth of superior cervical ganglion 



neurons via the IL-1R1 receptor [255, 256]. In vivo, IL-1β has been shown to activate microglia 

(which in turn secrete more IL-1β) and initiate BBB breakdown, increasing the brain’s 

permeability to additional peripherally circulating cytokines [257, 258]. 

 

Figure. 2 The role of IL-6 in mediating adverse neurodevelopmental outcome of offspring exposed to MIA. 

Elevated maternal IL-6, as seen in PE, leads to neurodevelopmental deficits in humans and animal models of 

MIA. High [IL-6] from the placenta reaches the fetal brain, where it can have various deleterious consequences 

for developing neurons. The effects of prenatal IL-6 exposure on offspring brain and behaviour have been 

attenuated in animal models by anti-IL-6 antibody or il-6 knockout. 

Perhaps the strongest candidate for a pathogenic mediator linking MIA and poor fetal 

neurodevelopmental outcome is IL-6 (Figure 2). The schizophrenia-like behaviours in mice 

prenatally exposed to poly(I:C) were shown to be IL-6-dependent [259]. In these experiments, 

maternal IL-6 or poly(I:C) administration induced similar behavioural deficits; however, 

poly(I:C) failed to affect offspring behaviour in il-6-/- mice or mice co-administered with an 

anti-IL-6 antibody [259]. Similarly, mice prenatally exposed to poly(I:C) have a transient 

increase in il-6 expression in the brain, in addition to autistic-like behaviours and a loss of 

cerebellar Purkinje neurons, which are attenuated by maternal knockout of il-6 or conditional 

knockout of il-6 specifically in the placenta [260]. Chronic maternal administration of IL-6 

also causes altered microglial morphology in exposed offspring, which is prevented by 

maternal IL-6 blockade [261]. These studies point to a primary role for IL-6 in facilitating 

structural and neurochemical brain changes in MIA-exposed offspring; furthermore, cerebral 

IL-6, similar to IL-1β, is increased in MIA and RUPP models, with detrimental effects on 



neurodevelopment. IL-6 inhibits the survival of serotonergic neurons and, like IL-1β, increases 

microglial activity resulting in increased IL-6 secretion [262, 263]. In mice, elevated 

concentration of IL-6 in the brain leads to multiple behavioural deficits; increased excitatory 

synaptogenesis and reduced inhibitory synaptogenesis; and alterations in dendritic spine length 

and morphology [264]. Intriguingly, another study showed that serum from pre-eclamptic 

women increased neurite number, length and branching in primary cortical neurons, and found 

a trend towards higher IL-6 in the PE sera compared to controls, suggesting a potential 

mechanistic role for IL-6 in this study [48].  

 

4.2 Oxidative Stress 

Oxidative stress is the relative increase in intracellular reactive oxygen species (ROS) 

production and corresponding relative reduction in antioxidant levels. Elevated levels of ROS 

are a normal feature of gestation and play important physiological roles in the establishment of 

a healthy pregnancy, including regulation of endometrial changes, fertilization, implantation 

and placental and embryonic growth [265, 266]. Excessively high levels of ROS, however, 

have been associated with the pathophysiology of various pregnancy disorders, including PE, 

gestational diabetes mellitus and spontaneous abortion [267], and this may also contribute to 

the sub-optimal neurodevelopmental trajectory of PE-F1s.  

4.2.1 Evidence for increased oxidative stress in Pre-eclampsia 

Compared to those of normotensive pregnant women, circulating blood and erythrocyte 

samples from women with PE reveal increased ROS production [268–270]; higher levels of 

the oxidative stress markers malondialdehyde (MDA), 8-isoprostane and leukocyte DNA 

damage [271–274]; lower levels of the antioxidants glutathione, lycopene, vitamin C and 

vitamin E [268, 271, 275, 276]; and altered activity of the antioxidant enzymes superoxide 

dismutase (SOD), catalase and glutathione peroxidase (GPx) [268, 269, 271, 277]. Although 

ROS are produced by both endothelial and circulating blood cells during pregnancy, the 

dominant source in PE is the placenta. Pre-eclamptic placentae exhibit increased ROS 

production [278, 279]; elevated levels of MDA, 8-isoprostane and oxidative DNA damage 

[280–282]; low levels of glutathione [283]; and reduced expression and activity of SOD, GPx, 

thioredoxin and thioredoxin reductase [271, 279, 283–285]. Correspondingly, rats exposed to 

RUPP have higher placental MDA and 8-isoprostane levels and reduced SOD activity, and 

RUPP-induced hypertension is attenuated by the antioxidant tempol [286]. Collectively, these 

studies suggest that exaggerated oxidative stress is a prominent feature of PE.  

Mitochondria are the primary source of ROS, and mitochondrial electron transport chain (ETC) 

deficits have been shown to increase ROS production [265, 287]. Notably, mitochondrial 

dysfunction in the placenta has been implicated as the major source of oxidative stress in PE. 

Mitochondria in pre-eclamptic placentae show extensive degeneration and apoptosis and have 

an altered metabolome [288] and mitochondrial protein expression profile, including 

downregulation of ETC complex V (ATP synthase) expression [289] and reduced expression 

and activity of ETC complex III (cytochrome c reductase) [290]. Correspondingly, 

mitochondria exhibit increased lipid peroxidation and MDA levels, which are markers of 

oxidative stress [291, 292]. Interestingly, mitochondria are not only a source of ROS, but also 

a target – dysfunctional mitochondria release ROS which can induce dysfunction and 



consequent ROS release from neighbouring mitochondria, amplifying cellular oxidative stress 

[293].  

In a large clinical trial, supplementation with the dietary antioxidants vitamin C and vitamin E 

failed to reduce the risk of PE [294]. One potential explanation for this is that the antioxidants 

failed to target the source of the problem – mitochondrial ROS (mROS). This hypothesis has 

led to a recent increase in the development of mitochondrial-targeted antioxidants as a potential 

therapeutic strategy with encouraging data emerging from pre-clinical models: RUPP exposure 

in pregnant rats leads to reduced ETC activity and respiratory rate and increased mROS 

production in placental mitochondria, and RUPP-induced hypertension was attenuated by the 

mitochondria-specific antioxidants MitoQ or MitoTEMPO [295]; RUPP-induced hypertension 

and increased sFlt1 levels were ameliorated by the nutraceutical mitochondrial antioxidant L-

ergothioneine, effects that were mediated in part by specifically reducing mROS production 

[296]. There is further evidence of the potential therapeutic benefit of specifically targeting 

mitochondria in other models of hypertension,  including angiotensin-II-induced hypertension 

in mice, which was significantly reduced following administration of mitoTEMPO, but, 

importantly, not by tempol, which lacks mitochondrial specificity [297]. Interestingly, the 

antioxidant trace element selenium is reduced in women with PE [298] and clinical trials 

implementing selenium supplementation have successfully reduced the risk of developing PE 

[299]. This may be because, unlike vitamins C and E, selenium exerts an antioxidant effect 

directly on placental mitochondria [300, 301]. 

Oxidative stress in PE is present not only in the maternal, but also fetal circulation. PE-F1 

umbilical vein blood is characterised by increased ROS, MDA and leukocyte DNA damage, 

GPx hypoactivity and decreased levels of vitamin C and selenium [274, 276, 298]. 

Additionally, there is significant mitochondrial dysfunction in human umbilical vein 

endothelial cells (HUVECs) [302]. Collectively these data show that while women with PE 

have multiple features that are indicative of exaggerated oxidative stress, these changes can 

also be seen in neonatal PE-F1s (Figure 1). 

4.2.2 The implications of prenatal exposure to oxidative stress for fetal 

neurodevelopmental programming 

Firstly, placental oxidative stress, as seen in PE, may affect fetal neurodevelopment indirectly 

by inducing the placenta to secrete various factors into the fetal circulation capable of affecting 

the developing nervous system. This is illustrated by a series of elegant experiments, whereby 

the authors exposed the placental cell line BeWo or placental explants to hypoxia in order to 

induce oxidative stress. BeWo- or placenta-conditioned media contained increased 

concentrations of TNFα, which, when added to human embryonic stem cells, caused DNA 

damage and apoptosis – the latter effect blocked by an anti- TNFα antibody [222]. Conditioned 

medium from both BeWo cells and placental explants exposed to oxidative stress was next 

added to primary cortical neurons resulting in reduced dendritic growth and increased relative 

abundance of astrocytes. In a rat model of gestational hypoxia, exposed rats exhibited placental 

oxidative stress and offspring brains displayed similar neuronal deficits as seen in vitro. In both 

cases, these neuronal deficits were prevented by therapeutic targeting of the placenta with 

MitoQ [303]. Finally, using conditioned media from placental explants from women with PE, 

these authors established that when added to primary cortical neurons, there was reduced 

dendritic growth, decreased GluN1 expression and increased GABAAα1 expression in an 

astrocyte-dependent manner, effects that were diminished by ex vivo treatment of explants with 



MitoQ [304]. Therefore, oxidative stress stimulates the release of factors from the placenta 

which are harmful to neurons. 

 

Figure 3:  The influence of placental and fetal brain oxidative stress on fetal neurodevelopment. The 

exaggerated oxidative stress reported in PE may adversely impact fetal neurodevelopment both indirectly, via the 

release of factors from the placenta that are harmful to neurons; and directly, via the influence of ROS on 

neurodevelopmental processes. 

Secondly, the high oxidative status of PE-F1s is particularly pertinent due the direct impact of 

ROS on neuronal development. Highly regulated concentrations of ROS modulate many 

neurodevelopmental processes, including neural progenitor cell proliferation and 

differentiation, apoptosis, dendritic growth and axonal guidance [305–309]. The brain, 

however, is particularly vulnerable to the deleterious effects of hyperphysiological oxidative 

stress and this has been illustrated by a number of animal studies. Mice with genetic 

impairments in the repair of oxidative DNA damage, for example, have memory deficits which 

can be recovered by antioxidant treatment [310]. Offspring of rats exposed to the L-NAME 

(Nωnitro-L-arginine methyl ester) preclinical model of PE have reduced neurogenesis at birth, 

decreased numbers of oligodendrocytes in the cortex, delayed development of sensorimotor 

reflexes and reactions and impaired spatial learning [300-302] and it has recently been shown 

that rats prenatally exposed to this model also exhibit raised levels of oxidative stress markers 

in the cortex and cerebellum [303]. Similarly, in a mouse model of DiGeorge/22q11 deletion 

syndrome, a developmental disorder which includes widespread neurodevelopmental deficits, 

layer 2/3 cortical neurons had mitochondrial damage and oxidative stress concurrent with 

defects in connectivity, synapse integrity and dendritic growth and branching, which 

manifested as cognitive behavioural deficits in the mice. These mitochondrial, dendritic and 

behavioural alterations were ameliorated by antioxidant treatment [311]. Finally, in a rat model 



of MIA, male, but not female, offspring exhibit oxidative stress in the hippocampus and 

corresponding spatial learning deficits, which were rescued by maternal treatment with 

antioxidants, suggesting that some of the effects of MIA on offspring behaviour in males are 

mediated by oxidative stress [312]. In line with these observations, high levels of markers of 

oxidative stress  are reported in those with ASD, ADHD, epilepsy and schizophrenia [313–

316]. This has been most extensively investigated in ASD, where there is prominent 

mitochondrial dysfunction and oxidative stress in the brain [317–319]. Overall, these data 

suggest that the oxidative stress reported in PE-F1s may contribute to their sub-optimal 

neurodevelopmental trajectory via the direct effects of exaggerated ROS concentrations on 

neurodevelopmental processes (Figure 3).  

4.2.3 The interplay between oxidative stress and inflammation 

Oxidative stress and inflammation are inextricably linked and cannot be viewed as independent 

systems in the context of PE. Placental oxidative stress is one of the earliest events in PE and 

this causes the placenta to secrete various factors into the maternal circulation, ultimately 

leading to the hyperinflammatory and oxidative state that characterises the disease [320]. 

Markers of both oxidative stress and inflammation can be detected in advance of the onset of 

clinical symptoms and circulating levels of IL-6 are highly correlated with protein 

carbonylation, an oxidative stress marker, in PE [272, 273, 321, 322]. 

Oxidative stress activates redox-sensitive transcription factors, particularly NF-κB, 

upregulating cytokine gene expression [323, 324]. In the human placenta, 

hypoxia/reoxygenation activates p38, NF-κB and MAPK signalling pathways, increasing 

expression of downstream TNFα and IL-1β, an effect that is blocked by vitamins C or E [325]. 

Similarly, mitochondrial dysfunction in trophoblasts stimulates IL-6 secretion, which is 

blocked by vitamin E or the antioxidant, deferoxamine [326]. Activation of T-cell receptors 

induces intracellular ROS and downstream IL-2 and IL-4 production, which can be prevented 

by inhibition of ETC complex I [327]. Complex IV inhibition alters leukocyte response to LPS, 

increasing IL-6 and decreasing TNFα production; also, in healthy adults, leukocyte complex 

IV activity is correlated with IL-6 levels [328].  

Another mechanism by which oxidative stress can promote inflammation in PE is the 

production of mitochondrial damage-associated molecular patterns (mtDAMPs) [329]. 

Oxidative stress induces the release of mtDNA and N-formyl peptides, both of which act as 

mtDAMPs and bind TLR-9 or FPR-1 receptors, respectively, on neutrophils to activate and 

drive them towards a pro-inflammatory phenotype [330]. This may have implications for PE, 

due to increased circulating levels of mtDNA and increased TLR-9 expression and activity in 

dendritic cells and placenta [200, 331–333]. Similarly, PE serum induces mROS and TLR-9 

expression in HUVECs, an effect which is attenuated by MitoTEMPO [334]. Thus, oxidative 

stress in PE, via activation of redox-sensitive transcription factors and mtDAMPs, induces the 

release of cytokines both from the placenta and from immune cells.  

The reverse is also true, in that inflammation promotes oxidative stress, by stimulating 

mitochondrial and non-mitochondrial (primarily via NADPH oxidase activity) ROS production 

[267]. Injection of IL-17 or Th17 cells from RUPP rats into normal pregnant rats induces 

placental oxidative stress [206, 335]; conversely, RUPP-induced placental oxidative stress is 

diminished by injection of IL-10, TNFα blocker or Treg cells [207, 209, 336]. Endogenous 

natural killer (NK) cells also contribute to RUPP-induced placental oxidative stress, while NK 



cell depletion mitigates these effects [337]. When stimulated by N-formyl peptides, neutrophils 

from pre-eclamptic women release higher levels of ROS than those from normotensive controls 

resulting in increased endothelial cell damage, suggesting that, in PE, there is a heightened 

sensitivity to inflammation-induced oxidative stress [338].  

 

Figure 4: The interplay between oxidative stress and inflammation in the context of PE. Exaggerated 

oxidative stress and maternal immune activation are well-characterised features of PE and both systems interact 

such that increases in one induce a corresponding increase in the other. This is particularly well-characterised in 

the placenta and circulating immune cells such as neutrophils, resulting in the constant maintenance of an adverse 

in utero microenvironment, which is likely to have deleterious consequences for fetal neurodevelopment. 

 

Thus, the roles of inflammation and oxidative stress are convergent and interconnected. 

Upregulation of one leads to increases in the other, in a self-perpetuating cycle that culminates 

in a highly oxidative and inflammatory microenvironment for the developing foetus (Figure 4). 

This adverse in utero environment persists throughout gestation and may have deleterious 

consequences for fetal neurodevelopmental outcome. 



 

5.0 Conclusion: 

The association between PE and offspring neurodevelopmental outcome is becoming 

increasingly well recognized. Recent evidence has established in utero exposure to PE as a risk 

factor for ASD and ADHD and may also confer an increased risk upon offspring for poor 

cognitive function, CP, epilepsy, schizophrenia and neuroanatomical alterations similar to 

those seen in these disorders. Currently, however, the associative mechanisms are yet to be 

fully elucidated, and this review proposes inflammation and oxidative stress as potential 

leading candidates. Although inflammation and oxidative stress have been discussed 

independently in this review for the purpose of clarity, it is important to recognize that these 

systems are intricately interconnected and increases in one lead, via positive feedback, to 

augmentation of the other. 

Both inflammation and oxidative stress are prominent features of PE pathophysiology, creating 

a sub-optimal in utero environment. Persistent exposure to this inflammatory and oxidative 

milieu, as well as fetal inflammation and oxidative stress, are likely to affect 

neurodevelopmental programming in exposed offspring via the mechanisms provided in 

section 4 of this review. On these premises, targeting maternal immune activation, particularly 

IL-6, and maternal oxidative stress, particularly mROS in the placenta, are predicted to improve 

the neurodevelopmental outcome of exposed offspring. Although, to the best of our knowledge, 

no study to date has attempted both interventions simultaneously, several animal studies, as 

discussed above, have significantly improved offspring neurodevelopmental outcome using 

one therapeutic approach or the other. These studies are encouraging and suggest that similar 

interventions in humans may ameliorate the increased risk of neurodevelopmental disorders 

seen in PE-F1s. 
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